"""Fabex 'image_utils.py' © 2012 Vilem Novak
Functions to render, save, convert and analyze image data.
"""
from math import (
acos,
ceil,
cos,
floor,
pi,
radians,
sin,
tan,
)
from typing import Optional
import os
import random
import time
import numpy
import bpy
try:
import bl_ext.blender_org.simplify_curves_plus as curve_simplify
except ImportError:
pass
from mathutils import (
Euler,
Vector,
)
from .async_utils import progress_async
from .chunk_utils import parent_child_distance, chunks_to_shapely
from .simple_utils import (
progress,
get_cache_path,
)
from .numba_utils import (
jit,
prange,
)
[docs]
def numpy_save(a, iname):
"""Save a NumPy array as an image file in OpenEXR format.
This function converts a NumPy array into an image and saves it using
Blender's rendering capabilities. It sets the image format to OpenEXR
with black and white color mode and a color depth of 32 bits. The image
is saved to the specified filename.
Args:
a (numpy.ndarray): The NumPy array to be converted and saved as an image.
iname (str): The file path where the image will be saved.
"""
inamebase = bpy.path.basename(iname)
i = numpy_to_image(a, inamebase)
r = bpy.context.scene.render
r.image_settings.file_format = "OPEN_EXR"
r.image_settings.color_mode = "BW"
r.image_settings.color_depth = "32"
i.save_render(iname)
[docs]
def get_circle(r, z):
"""Generate a 2D array representing a circle.
This function creates a 2D NumPy array filled with a specified value for
points that fall within a circle of a given radius. The circle is
centered in the array, and the function uses the Euclidean distance to
determine which points are inside the circle. The resulting array has
dimensions that are twice the radius, ensuring that the entire circle
fits within the array.
Args:
r (int): The radius of the circle.
z (float): The value to fill the points inside the circle.
Returns:
numpy.ndarray: A 2D array where points inside the circle are filled
with the value `z`, and points outside are filled with -10.
"""
car = numpy.full(shape=(r * 2, r * 2), fill_value=-10, dtype=numpy.double)
res = 2 * r
m = r
v = Vector((0, 0, 0))
for a in range(0, res):
v.x = a + 0.5 - m
for b in range(0, res):
v.y = b + 0.5 - m
if v.length <= r:
car[a, b] = z
return car
[docs]
def get_circle_binary(r):
"""Generate a binary representation of a circle in a 2D grid.
This function creates a 2D boolean array where the elements inside a
circle of radius `r` are set to `True`, and the elements outside the
circle are set to `False`. The circle is centered in the middle of the
array, which has dimensions of (2*r, 2*r). The function iterates over
each point in the grid and checks if it lies within the specified
radius.
Args:
r (int): The radius of the circle.
Returns:
numpy.ndarray: A 2D boolean array representing the circle.
"""
car = numpy.full(shape=(r * 2, r * 2), fill_value=False, dtype=bool)
res = 2 * r
m = r
v = Vector((0, 0, 0))
for a in range(0, res):
v.x = a + 0.5 - m
for b in range(0, res):
v.y = b + 0.5 - m
if v.length <= r:
car.itemset((a, b), True)
return car
# get cutters for the z-buffer image method
[docs]
def numpy_to_image(a: numpy.ndarray, iname: str) -> bpy.types.Image:
"""Convert a NumPy array to a Blender image.
This function takes a NumPy array and converts it into a Blender image.
It first checks if an image with the specified name and dimensions
already exists in Blender. If it does not exist, a new image is created
with the specified name and dimensions. The pixel data from the NumPy
array is then reshaped and assigned to the image's pixel buffer.
Args:
a (numpy.ndarray): A 2D NumPy array representing the image data.
iname (str): The name to assign to the created or found image.
Returns:
bpy.types.Image: The Blender image object that was created or found.
"""
t = time.time()
width = a.shape[0]
height = a.shape[1]
# Based on the Blender source code: source/blender/makesdna/DNA_ID.h. MAX_ID_NAME=64
# is defining the maximum length of the id and we need to subtract four letters for
# suffix as Blender seems to use the ".%03d" pattern to avoid creating duplicate ids.
iname_59 = iname[:59]
print(f"numpy_to_image: iname:{iname}, width:{width}, height:{height}")
def find_image(name: str, width: int, heigh: int) -> Optional[bpy.types.Image]:
if name in bpy.data.images:
image = bpy.data.images[name]
if image.size[0] == width and image.size[1] == height:
return image
return None
image = find_image(iname, width, height) or find_image(iname_59, width, height)
if image is None:
print(f"numpy_to_image: Creating a new image:{iname_59}")
result = bpy.ops.image.new(
name=iname_59,
width=width,
height=height,
color=(0, 0, 0, 1),
alpha=True,
generated_type="BLANK",
float=True,
)
print(f"numpy_to_image: Image creation result:{result}")
# If 'iname_59' id didn't exist previously, then
# it should have been created without changing its id.
image = bpy.data.images[iname_59]
a = a.swapaxes(0, 1)
a = a.reshape(width * height)
a = a.repeat(4)
a[3::4] = 1
image.pixels[:] = a[:] # this gives big speedup!
print(f"numpy_to_image: Time:{str(time.time() - t)}")
return image
[docs]
def image_to_numpy(i):
"""Convert a Blender image to a NumPy array.
This function takes a Blender image object and converts its pixel data
into a NumPy array. It retrieves the pixel data, reshapes it, and swaps
the axes to match the expected format for further processing. The
function also measures the time taken for the conversion and prints it
to the console.
Args:
i (Image): A Blender image object containing pixel data.
Returns:
numpy.ndarray: A 2D NumPy array representing the image pixels.
"""
t = time.time()
width = i.size[0]
height = i.size[1]
na = numpy.full(shape=(width * height * 4,), fill_value=-10, dtype=numpy.double)
p = i.pixels[:]
# these 2 lines are about 15% faster than na[:]=i.pixels[:].... whyyyyyyyy!!?!?!?!?!
# Blender image data access is evil.
na[:] = p
na = na[::4]
na = na.reshape(height, width)
na = na.swapaxes(0, 1)
print("\nTime of Image to Numpy " + str(time.time() - t))
return na
@jit(nopython=True, parallel=True, fastmath=False, cache=True)
[docs]
def _offset_inner_loop(y1, y2, cutterArrayNan, cwidth, sourceArray, width, height, comparearea):
"""Offset the inner loop for processing a specified area in a 2D array.
This function iterates over a specified range of rows and columns in a
2D array, calculating the maximum value from a source array combined
with a cutter array for each position in the defined area. The results
are stored in the comparearea array, which is updated with the maximum
values found.
Args:
y1 (int): The starting index for the row iteration.
y2 (int): The ending index for the row iteration.
cutterArrayNan (numpy.ndarray): A 2D array used for modifying the source array.
cwidth (int): The width of the area to consider for the maximum calculation.
sourceArray (numpy.ndarray): The source 2D array from which maximum values are derived.
width (int): The width of the source array.
height (int): The height of the source array.
comparearea (numpy.ndarray): A 2D array where the calculated maximum values are stored.
Returns:
None: This function modifies the comparearea in place and does not return a
value.
"""
for y in prange(y1, y2):
for x in range(0, width - cwidth):
comparearea[x, y] = numpy.nanmax(
sourceArray[x : x + cwidth, y : y + cwidth] + cutterArrayNan
)
[docs]
async def offset_area(o, samples):
"""Offsets the whole image with the cutter and skin offsets.
This function modifies the offset image based on the provided cutter and
skin offsets. It calculates the dimensions of the source and cutter
arrays, initializes an offset image, and processes the image in
segments. The function handles the inversion of the source array if
specified and updates the offset image accordingly. Progress is reported
asynchronously during processing.
Args:
o: An object containing properties such as `update_offset_image_tag`,
`min`, `max`, `inverse`, and `offset_image`.
samples (numpy.ndarray): A 2D array representing the source image data.
Returns:
numpy.ndarray: The updated offset image after applying the cutter and skin offsets.
"""
if o.update_offset_image_tag:
minx, miny, minz, maxx, maxy, maxz = o.min.x, o.min.y, o.min.z, o.max.x, o.max.y, o.max.z
sourceArray = samples
cutterArray = get_cutter_array(o, o.optimisation.pixsize)
# progress('image size', sourceArray.shape)
width = len(sourceArray)
height = len(sourceArray[0])
cwidth = len(cutterArray)
o.offset_image = numpy.full(shape=(width, height), fill_value=-10.0, dtype=numpy.double)
t = time.time()
m = int(cwidth / 2.0)
if o.inverse:
sourceArray = -sourceArray + minz
comparearea = o.offset_image[m : width - cwidth + m, m : height - cwidth + m]
# i=0
cutterArrayNan = numpy.where(
cutterArray > -10, cutterArray, numpy.full(cutterArray.shape, numpy.nan)
)
for y in range(0, 10):
y1 = (y * comparearea.shape[1]) // 10
y2 = ((y + 1) * comparearea.shape[1]) // 10
_offset_inner_loop(
y1, y2, cutterArrayNan, cwidth, sourceArray, width, height, comparearea
)
await progress_async("Offset Depth Image", int((y2 * 100) / comparearea.shape[1]))
o.offset_image[m : width - cwidth + m, m : height - cwidth + m] = comparearea
print("\nOffset Image Time " + str(time.time() - t))
o.update_offset_image_tag = False
return o.offset_image
[docs]
def dilate_array(ar, cycles):
"""Dilate a binary array using a specified number of cycles.
This function performs a dilation operation on a 2D binary array. For
each cycle, it updates the array by applying a logical OR operation
between the current array and its neighboring elements. The dilation
effect expands the boundaries of the foreground (True) pixels in the
binary array.
Args:
ar (numpy.ndarray): A 2D binary array (numpy array) where
dilation will be applied.
cycles (int): The number of dilation cycles to perform.
Returns:
None: The function modifies the input array in place and does not
return a value.
"""
for c in range(cycles):
ar[1:-1, :] = numpy.logical_or(ar[1:-1, :], ar[:-2, :])
ar[:, 1:-1] = numpy.logical_or(ar[:, 1:-1], ar[:, :-2])
[docs]
async def crazy_path(o):
"""Execute a greedy adaptive algorithm for path planning.
This function prepares an area based on the provided object `o`,
calculates the dimensions of the area, and initializes a mill image and
cutter array. The dimensions are determined by the maximum and minimum
coordinates of the object, adjusted by the simulation detail and border
width. The function is currently a stub and requires further
implementation.
Args:
o (object): An object containing properties such as max, min, optimisation, and
borderwidth.
Returns:
None: This function does not return a value.
"""
# TODO: try to do something with this stuff, it's just a stub. It should be a greedy adaptive algorithm.
# started another thing below.
await prepare_area(o)
sx = o.max.x - o.min.x
sy = o.max.y - o.min.y
resx = ceil(sx / o.optimisation.simulation_detail) + 2 * o.borderwidth
resy = ceil(sy / o.optimisation.simulation_detail) + 2 * o.borderwidth
o.millimage = numpy.full(shape=(resx, resy), fill_value=0.0, dtype=numpy.float)
# getting inverted cutter
o.cutterArray = -get_cutter_array(o, o.optimisation.simulation_detail)
[docs]
def build_stroke(start, end, cutterArray):
"""Build a stroke array based on start and end points.
This function generates a 2D stroke array that represents a stroke from
a starting point to an ending point. It calculates the length of the
stroke and creates a grid that is filled based on the positions defined
by the start and end coordinates. The function uses a cutter array to
determine how the stroke interacts with the grid.
Args:
start (tuple): A tuple representing the starting coordinates (x, y, z).
end (tuple): A tuple representing the ending coordinates (x, y, z).
cutterArray: An object that contains size information used to modify
the stroke array.
Returns:
numpy.ndarray: A 2D array representing the stroke, filled with
calculated values based on the input parameters.
"""
strokelength = max(abs(end[0] - start[0]), abs(end[1] - start[1]))
size_x = abs(end[0] - start[0]) + cutterArray.size[0]
size_y = abs(end[1] - start[1]) + cutterArray.size[0]
r = cutterArray.size[0] / 2
strokeArray = numpy.full(shape=(size_x, size_y), fill_value=-10.0, dtype=numpy.float)
samplesx = numpy.round(numpy.linspace(start[0], end[0], strokelength))
samplesy = numpy.round(numpy.linspace(start[1], end[1], strokelength))
samplesz = numpy.round(numpy.linspace(start[2], end[2], strokelength))
for i in range(0, len(strokelength)):
strokeArray[
samplesx[i] - r : samplesx[i] + r, samplesy[i] - r : samplesy[i] + r
] = numpy.maximum(
strokeArray[samplesx[i] - r : samplesx[i] + r, samplesy[i] - r : samplesy[i] + r],
cutterArray + samplesz[i],
)
return strokeArray
[docs]
def test_stroke():
pass
[docs]
def apply_stroke():
pass
[docs]
def test_stroke_binary(img, stroke):
pass # buildstroke()
[docs]
def get_sample_image(s, sarray, minz):
"""Get a sample image value from a 2D array based on given coordinates.
This function retrieves a value from a 2D array by performing bilinear
interpolation based on the provided coordinates. It checks if the
coordinates are within the bounds of the array and calculates the
interpolated value accordingly. If the coordinates are out of bounds, it
returns -10.
Args:
s (tuple): A tuple containing the x and y coordinates (float).
sarray (numpy.ndarray): A 2D array from which to sample the image values.
minz (float): A minimum threshold value (not used in the current implementation).
Returns:
float: The interpolated value from the 2D array, or -10 if the coordinates are
out of bounds.
"""
x = s[0]
y = s[1]
if (x < 0 or x > len(sarray) - 1) or (y < 0 or y > len(sarray[0]) - 1):
return -10
else:
minx = floor(x)
maxx = minx + 1
miny = floor(y)
maxy = miny + 1
s1a = sarray[minx, miny]
s2a = sarray[maxx, miny]
s1b = sarray[minx, maxy]
s2b = sarray[maxx, maxy]
# s1a = sarray.item(minx, miny) # most optimal access to array so far
# s2a = sarray.item(maxx, miny)
# s1b = sarray.item(minx, maxy)
# s2b = sarray.item(maxx, maxy)
sa = s1a * (maxx - x) + s2a * (x - minx)
sb = s1b * (maxx - x) + s2b * (x - minx)
z = sa * (maxy - y) + sb * (y - miny)
return z
[docs]
def get_resolution(o):
"""Calculate the resolution based on the dimensions of an object.
This function computes the resolution in both x and y directions by
determining the width and height of the object, adjusting for pixel size
and border width. The resolution is calculated by dividing the
dimensions by the pixel size and adding twice the border width to each
dimension.
Args:
o (object): An object with attributes `max`, `min`, `optimisation`,
and `borderwidth`. The `max` and `min` attributes should
have `x` and `y` properties representing the coordinates,
while `optimisation` should have a `pixsize` attribute.
Returns:
None: This function does not return a value; it performs calculations
to determine resolution.
"""
sx = o.max.x - o.min.x
sy = o.max.y - o.min.y
resx = ceil(sx / o.optimisation.pixsize) + 2 * o.borderwidth
resy = ceil(sy / o.optimisation.pixsize) + 2 * o.borderwidth
# this basically renders blender zbuffer and makes it accessible by saving & loading it again.
# that's because blender doesn't allow accessing pixels in render :(
[docs]
def _backup_render_settings(pairs):
"""Backup the render settings of Blender objects.
This function iterates over a list of pairs consisting of owners and
their corresponding structure names. It retrieves the properties of each
structure and stores them in a backup list. If the structure is a
Blender object, it saves all its properties that do not start with an
underscore. For simple values, it directly appends them to the
properties list. This is useful for preserving render settings that
Blender does not allow direct access to during rendering.
Args:
pairs (list): A list of tuples where each tuple contains an owner and a structure
name.
Returns:
list: A list containing the backed-up properties of the specified Blender
objects.
"""
properties = []
for owner, struct_name in pairs:
obj = getattr(owner, struct_name)
if isinstance(obj, bpy.types.bpy_struct):
# structure, backup all properties
obj_value = {}
for k in dir(obj):
if not k.startswith("_"):
obj_value[k] = getattr(obj, k)
properties.append(obj_value)
else:
# simple value
properties.append(obj)
[docs]
def _restore_render_settings(pairs, properties):
"""Restore render settings for a given owner and structure.
This function takes pairs of owners and structure names along with their
corresponding properties. It iterates through these pairs, retrieves the
appropriate object from the owner using the structure name, and sets the
properties on the object. If the object is an instance of
`bpy.types.bpy_struct`, it updates its attributes; otherwise, it
directly sets the value on the owner.
Args:
pairs (list): A list of tuples where each tuple contains an owner and a structure
name.
properties (list): A list of dictionaries containing property names and their corresponding
values.
"""
for (owner, struct_name), obj_value in zip(pairs, properties):
obj = getattr(owner, struct_name)
if isinstance(obj, bpy.types.bpy_struct):
for k, v in obj_value.items():
setattr(obj, k, v)
else:
setattr(owner, struct_name, obj_value)
[docs]
def render_sample_image(o):
"""Render a sample image based on the provided object settings.
This function generates a Z-buffer image for a given object by either
rendering it from scratch or loading an existing image from the cache.
It handles different geometry sources and applies various settings to
ensure the image is rendered correctly. The function also manages backup
and restoration of render settings to maintain the scene's integrity
during the rendering process.
Args:
o (object): An object containing various properties and settings
Returns:
numpy.ndarray: The generated or loaded Z-buffer image as a NumPy array.
"""
t = time.time()
progress("Getting Z-Buffer")
# print(o.zbuffer_image)
o.update_offset_image_tag = True
if o.geometry_source == "OBJECT" or o.geometry_source == "COLLECTION":
pixsize = o.optimisation.pixsize
sx = o.max.x - o.min.x
sy = o.max.y - o.min.y
resx = ceil(sx / o.optimisation.pixsize) + 2 * o.borderwidth
resy = ceil(sy / o.optimisation.pixsize) + 2 * o.borderwidth
if (
not o.update_z_buffer_image_tag
and len(o.zbuffer_image) == resx
and len(o.zbuffer_image[0]) == resy
):
# if we call this accidentally in more functions, which currently happens...
# print('has zbuffer')
return o.zbuffer_image
# ###setup image name
iname = get_cache_path(o) + "_z.exr"
if not o.update_z_buffer_image_tag:
try:
i = bpy.data.images.load(iname)
if i.size[0] != resx or i.size[1] != resy:
print("Z Buffer Size Changed:", i.size, resx, resy)
o.update_z_buffer_image_tag = True
except:
o.update_z_buffer_image_tag = True
if o.update_z_buffer_image_tag:
s = bpy.context.scene
s.use_nodes = True
vl = bpy.context.view_layer
n = s.node_tree
r = s.render
SETTINGS_TO_BACKUP = [
(s.render, "resolution_x"),
(s.render, "resolution_x"),
(s.cycles, "samples"),
(s, "camera"),
(vl, "samples"),
(vl.cycles, "use_denoising"),
(s.world, "mist_settings"),
(r, "resolution_x"),
(r, "resolution_y"),
(r, "resolution_percentage"),
]
for ob in s.objects:
SETTINGS_TO_BACKUP.append((ob, "hide_render"))
backup_settings = None
try:
backup_settings = _backup_render_settings(SETTINGS_TO_BACKUP)
# prepare nodes first
r.resolution_x = resx
r.resolution_y = resy
# use cycles for everything because
# it renders okay on github actions
r.engine = "CYCLES"
s.cycles.samples = 1
vl.samples = 1
vl.cycles.use_denoising = False
n.links.clear()
n.nodes.clear()
node_in = n.nodes.new("CompositorNodeRLayers")
s.view_layers[node_in.layer].use_pass_mist = True
mist_settings = s.world.mist_settings
s.world.mist_settings.depth = 10.0
s.world.mist_settings.start = 0
s.world.mist_settings.falloff = "LINEAR"
s.world.mist_settings.height = 0
s.world.mist_settings.intensity = 0
node_out = n.nodes.new("CompositorNodeOutputFile")
node_out.base_path = os.path.dirname(iname)
node_out.format.file_format = "OPEN_EXR"
node_out.format.color_mode = "RGB"
node_out.format.color_depth = "32"
node_out.file_slots.new(os.path.basename(iname))
n.links.new(node_in.outputs[node_in.outputs.find("Mist")], node_out.inputs[-1])
###################
# resize operation image
o.offset_image = numpy.full(shape=(resx, resy), fill_value=-10, dtype=numpy.double)
# various settings for faster render
r.resolution_percentage = 100
# add a new camera settings
bpy.ops.object.camera_add(
align="WORLD", enter_editmode=False, location=(0, 0, 0), rotation=(0, 0, 0)
)
camera = bpy.context.active_object
bpy.context.scene.camera = camera
camera.data.type = "ORTHO"
camera.data.ortho_scale = max(
resx * o.optimisation.pixsize, resy * o.optimisation.pixsize
)
camera.location = (o.min.x + sx / 2, o.min.y + sy / 2, 1)
camera.rotation_euler = (0, 0, 0)
camera.data.clip_end = 10.0
# if not o.render_all:#removed in 0.3
h = []
# ob=bpy.data.objects[o.object_name]
for ob in s.objects:
ob.hide_render = True
for ob in o.objects:
ob.hide_render = False
bpy.ops.render.render()
n.nodes.remove(node_out)
n.nodes.remove(node_in)
camera.select_set(True)
bpy.ops.object.delete()
os.replace(iname + "%04d.exr" % (s.frame_current), iname)
finally:
if backup_settings is not None:
_restore_render_settings(SETTINGS_TO_BACKUP, backup_settings)
else:
print("Failed to Backup Scene Settings")
i = bpy.data.images.load(iname)
bpy.context.scene.render.engine = "FABEX_RENDER"
a = image_to_numpy(i)
a = 10.0 * a
a = 1.0 - a
o.zbuffer_image = a
o.update_z_buffer_image_tag = False
else:
i = bpy.data.images[o.source_image_name]
if o.source_image_crop:
sx = int(i.size[0] * o.source_image_crop_start_x / 100.0)
ex = int(i.size[0] * o.source_image_crop_end_x / 100.0)
sy = int(i.size[1] * o.source_image_crop_start_y / 100.0)
ey = int(i.size[1] * o.source_image_crop_end_y / 100.0)
else:
sx = 0
ex = i.size[0]
sy = 0
ey = i.size[1]
# o.offset_image.resize(ex - sx + 2 * o.borderwidth, ey - sy + 2 * o.borderwidth)
o.optimisation.pixsize = o.source_image_size_x / i.size[0]
progress("Pixel Size in the Image Source", o.optimisation.pixsize)
rawimage = image_to_numpy(i)
maxa = numpy.max(rawimage)
mina = numpy.min(rawimage)
neg = o.source_image_scale_z < 0
# waterline strategy needs image border to have ok ambient.
if o.strategy == "WATERLINE":
a = numpy.full(
shape=(2 * o.borderwidth + i.size[0], 2 * o.borderwidth + i.size[1]),
fill_value=1 - neg,
dtype=numpy.float,
)
else: # other operations like parallel need to reach the border
a = numpy.full(
shape=(2 * o.borderwidth + i.size[0], 2 * o.borderwidth + i.size[1]),
fill_value=neg,
dtype=numpy.float,
)
# 2*o.borderwidth
a[o.borderwidth : -o.borderwidth, o.borderwidth : -o.borderwidth] = rawimage
a = a[sx : ex + o.borderwidth * 2, sy : ey + o.borderwidth * 2]
if o.source_image_scale_z < 0:
# negative images place themselves under the 0 plane by inverting through scale multiplication
# first, put the image down, se we know the image minimum is on 0
a = a - mina
a *= o.source_image_scale_z
else: # place positive images under 0 plane, this is logical
# first, put the image down, se we know the image minimum is on 0
a = a - mina
a *= o.source_image_scale_z
a -= (maxa - mina) * o.source_image_scale_z
a += o.source_image_offset.z # after that, image gets offset.
o.min_z = numpy.min(a) # TODO: I really don't know why this is here...
o.min.z = numpy.min(a)
print("min z ", o.min.z)
print("max z ", o.max.z)
print("max image ", numpy.max(a))
print("min image ", numpy.min(a))
o.zbuffer_image = a
# progress('got z buffer also with conversion in:')
progress(time.time() - t)
# progress(a)
o.update_z_buffer_image_tag = False
return o.zbuffer_image
# return numpy.array([])
[docs]
async def prepare_area(o):
"""Prepare the area for rendering by processing the offset image.
This function handles the preparation of the area by rendering a sample
image and managing the offset image based on the provided options. It
checks if the offset image needs to be updated and loads it if
necessary. If the inverse option is set, it adjusts the samples
accordingly before calling the offsetArea function. Finally, it saves
the processed offset image.
Args:
o (object): An object containing various properties and methods
required for preparing the area, including flags for
updating the offset image and rendering options.
"""
# if not o.use_exact:
render_sample_image(o)
samples = o.zbuffer_image
iname = get_cache_path(o) + "_off.exr"
if not o.update_offset_image_tag:
progress("Loading Offset Image")
try:
o.offset_image = image_to_numpy(bpy.data.images.load(iname))
except:
o.update_offset_image_tag = True
if o.update_offset_image_tag:
if o.inverse:
samples = numpy.maximum(samples, o.min.z - 0.00001)
await offset_area(o, samples)
numpy_save(o.offset_image, iname)
[docs]
def get_cutter_array(operation, pixsize):
"""Generate a cutter array based on the specified operation and pixel size.
This function calculates a 2D array representing the cutter shape based
on the cutter type defined in the operation object. The cutter can be of
various types such as 'END', 'BALL', 'VCARVE', 'CYLCONE', 'BALLCONE', or
'CUSTOM'. The function uses geometric calculations to fill the array
with appropriate values based on the cutter's dimensions and properties.
Args:
operation (object): An object containing properties of the cutter, including
cutter type, diameter, tip angle, and other relevant parameters.
pixsize (float): The size of each pixel in the generated cutter array.
Returns:
numpy.ndarray: A 2D array filled with values representing the cutter shape.
"""
type = operation.cutter_type
# print('generating cutter')
r = operation.cutter_diameter / 2 + operation.skin # /operation.pixsize
res = ceil((r * 2) / pixsize)
m = res / 2.0
car = numpy.full(shape=(res, res), fill_value=-10.0, dtype=float)
v = Vector((0, 0, 0))
ps = pixsize
if type == "END":
for a in range(0, res):
v.x = (a + 0.5 - m) * ps
for b in range(0, res):
v.y = (b + 0.5 - m) * ps
if v.length <= r:
car.itemset((a, b), 0)
elif type == "BALL" or type == "BALLNOSE":
for a in range(0, res):
v.x = (a + 0.5 - m) * ps
for b in range(0, res):
v.y = (b + 0.5 - m) * ps
if v.length <= r:
z = sin(acos(v.length / r)) * r - r
car.itemset((a, b), z) # [a,b]=z
elif type == "VCARVE":
angle = operation.cutter_tip_angle
s = tan(pi * (90 - angle / 2) / 180) # angle in degrees
for a in range(0, res):
v.x = (a + 0.5 - m) * ps
for b in range(0, res):
v.y = (b + 0.5 - m) * ps
if v.length <= r:
z = -v.length * s
car.itemset((a, b), z)
elif type == "CYLCONE":
angle = operation.cutter_tip_angle
cyl_r = operation.cylcone_diameter / 2
s = tan(pi * (90 - angle / 2) / 180) # angle in degrees
for a in range(0, res):
v.x = (a + 0.5 - m) * ps
for b in range(0, res):
v.y = (b + 0.5 - m) * ps
if v.length <= r:
z = -(v.length - cyl_r) * s
if v.length <= cyl_r:
z = 0
car.itemset((a, b), z)
elif type == "BALLCONE":
angle = radians(operation.cutter_tip_angle) / 2
ball_r = operation.ball_radius
cutter_r = operation.cutter_diameter / 2
conedepth = (cutter_r - ball_r) / tan(angle)
Ball_R = ball_r / cos(angle)
D_ofset = ball_r * tan(angle)
s = tan(pi / 2 - angle)
for a in range(0, res):
v.x = (a + 0.5 - m) * ps
for b in range(0, res):
v.y = (b + 0.5 - m) * ps
if v.length <= cutter_r:
z = -(v.length - ball_r) * s - Ball_R + D_ofset
if v.length <= ball_r:
z = sin(acos(v.length / Ball_R)) * Ball_R - Ball_R
car.itemset((a, b), z)
elif type == "CUSTOM":
cutob = bpy.data.objects[operation.cutter_object_name]
scale = ((cutob.dimensions.x / cutob.scale.x) / 2) / r #
# print(cutob.scale)
vstart = Vector((0, 0, -10))
vend = Vector((0, 0, 10))
print("Sampling Custom Cutter")
maxz = -1
for a in range(0, res):
vstart.x = (a + 0.5 - m) * ps * scale
vend.x = vstart.x
for b in range(0, res):
vstart.y = (b + 0.5 - m) * ps * scale
vend.y = vstart.y
v = vend - vstart
c = cutob.ray_cast(vstart, v, distance=1.70141e38)
if c[3] != -1:
z = -c[1][2] / scale
# print(c)
if z > -9:
# print(z)
if z > maxz:
maxz = z
car.itemset((a, b), z)
car -= maxz
return car