Source code for cam.gcode_import_parser

"""Fabex 'gcodeimportparser.py'

Code modified from YAGV (Yet Another G-code Viewer) - https://github.com/jonathanwin/yagv
No license terms found in YAGV repo, will assume GNU release
"""

import math
import time

import numpy as np

import bpy

np.set_printoptions(suppress=True)  # suppress scientific notation in subdivide functions linspace


[docs] def import_gcode(self, context, filepath): """Import G-code data into the scene. This function reads G-code from a specified file and processes it according to the settings defined in the context. It utilizes the GcodeParser to parse the file and classify segments of the model. Depending on the options set in the scene, it may subdivide the model and draw it with or without layer splitting. The time taken for the import process is printed to the console. Args: context (Context): The context containing the scene and tool settings. filepath (str): The path to the G-code file to be imported. Returns: dict: A dictionary indicating the import status, typically {'FINISHED'}. """ print("Running read_some_data...") scene = context.scene mytool = self then = time.time() parse = GcodeParser() model = parse.parse_file(filepath) if mytool.subdivide: model.subdivide(mytool.max_segment_size) model.classify_segments() if mytool.split_layers: model.draw(split_layers=True) else: model.draw(split_layers=False) now = time.time() print("Importing Gcode Took ", round(now - then, 1), "Seconds") return {"FINISHED"}
[docs] def segments_to_meshdata(segments): """Convert a list of segments into mesh data consisting of vertices and edges. This function processes a list of segment objects, extracting the coordinates of vertices and defining edges based on the styles of the segments. It identifies when to add vertices and edges based on whether the segments are in 'extrude' or 'travel' styles. The resulting mesh data can be used for 3D modeling or rendering applications. Args: segments (list): A list of segment objects, each containing 'style' and 'coords' attributes. Returns: tuple: A tuple containing two elements: - list: A list of vertices, where each vertex is represented as a list of coordinates [X, Y, Z]. - list: A list of edges, where each edge is represented as a list of indices corresponding to the vertices. """ # edges only on extrusion segs = segments verts = [] edges = [] del_offset = ( 0 # to travel segs in a row, one gets deleted, need to keep track of index for edges ) for i in range(len(segs)): if i >= len(segs) - 1: if segs[i].style == "extrude": verts.append( [ segs[i].coords["X"], segs[i].coords["Y"], segs[i].coords["Z"], ] ) break # start of extrusion for first time if segs[i].style == "travel" and segs[i + 1].style == "extrude": verts.append( [ segs[i].coords["X"], segs[i].coords["Y"], segs[i].coords["Z"], ] ) verts.append( [ segs[i + 1].coords["X"], segs[i + 1].coords["Y"], segs[i + 1].coords["Z"], ] ) edges.append([i - del_offset, (i - del_offset) + 1]) # mitte, current and next are extrusion, only add next, current is already in vert list if segs[i].style == "extrude" and segs[i + 1].style == "extrude": verts.append( [ segs[i + 1].coords["X"], segs[i + 1].coords["Y"], segs[i + 1].coords["Z"], ] ) edges.append([i - del_offset, (i - del_offset) + 1]) if segs[i].style == "travel" and segs[i + 1].style == "travel": del_offset += 1 return verts, edges
[docs] def obj_from_pydata(name, verts, edges=None, close=True, collection_name=None): """Create a Blender object from provided vertex and edge data. This function generates a mesh object in Blender using the specified vertices and edges. If edges are not provided, it automatically creates a chain of edges connecting the vertices. The function also allows for the option to close the mesh by connecting the last vertex back to the first. Additionally, it can place the created object into a specified collection within the Blender scene. The object is scaled down to a smaller size for better visibility in the Blender environment. Args: name (str): The name of the object to be created. verts (list): A list of vertex coordinates, where each vertex is represented as a tuple of (x, y, z). edges (list?): A list of edges defined by pairs of vertex indices. Defaults to None. close (bool?): Whether to close the mesh by connecting the last vertex to the first. Defaults to True. collection_name (str?): The name of the collection to which the object should be added. Defaults to None. Returns: None: The function does not return a value; it creates an object in the Blender scene. """ if edges is None: # join vertices into one uninterrupted chain of edges. edges = [[i, i + 1] for i in range(len(verts) - 1)] if close: edges.append([len(verts) - 1, 0]) # connect last to first me = bpy.data.meshes.new(name) me.from_pydata(verts, edges, []) obj = bpy.data.objects.new(name, me) # Move into collection if specified if collection_name is not None: # make argument optional # collection exists collection = bpy.data.collections.get(collection_name) if collection: bpy.data.collections[collection_name].objects.link(obj) else: collection = bpy.data.collections.new(collection_name) bpy.context.scene.collection.children.link(collection) # link collection to main scene bpy.data.collections[collection_name].objects.link(obj) obj.scale = (0.001, 0.001, 0.001) bpy.context.view_layer.objects.active = obj obj.select_set(True) bpy.ops.object.transform_apply(location=False, rotation=False, scale=True) if bpy.context.scene.gcode_output_type == "curve": bpy.ops.object.convert(target="CURVE")
[docs] class GcodeParser:
[docs] comment = ""
# global, to access in other classes(to access RGB values in comment above when parsing M163). # Theres probably better way def __init__(self):
[docs] self.model = GcodeModel(self)
[docs] def parse_file(self, path): """Parse a G-code file and update the model. This function reads a G-code file line by line, increments a line counter for each line, and processes each line using the `parseLine` method. The function assumes that the file is well-formed and that each line can be parsed without errors. After processing all lines, it returns the updated model. Args: path (str): The file path to the G-code file to be parsed. Returns: model: The updated model after parsing the G-code file. """ # read the gcode file with open(path, "r") as f: # init line counter self.lineNb = 0 # for all lines for line in f: # inc line counter self.lineNb += 1 # remove trailing linefeed self.line = line.rstrip() # parse a line self.parse_line() return self.model
[docs] def parse_line(self): """Parse a line of G-code and execute the corresponding command. This method processes a line of G-code by stripping comments, cleaning the command, and identifying the command code and its arguments. It handles specific G-code commands and invokes the appropriate parsing method if available. If the command is unsupported, it prints an error message. The method also manages tool numbers and coordinates based on the parsed command. """ # strip comments: bits = self.line.split(";", 1) if len(bits) > 1: GcodeParser.comment = bits[1] # extract & clean command command = bits[0].strip() s = "" a = "" a_old = "" for i in range(len(command)): # check each character in the line a = command[i] if ( a.isupper() and a_old != " " and i > 0 ): # add a space if upper case letter and no space is found before s += " " s += a a_old = a print(s) command = s # code is fist word, then args comm = command.split(None, 1) code = comm[0] if (len(comm) > 0) else None args = comm[1] if (len(comm) > 1) else None if code: # convert all G01 and G00 to G1 and G0 if code == "G01": code = "G1" if code == "G00": code = "G0" if hasattr(self, "parse_" + code): getattr(self, "parse_" + code)(args) self.last_command = code else: if code[0] == "T": self.model.toolnumber = int(code[1:]) print(self.model.toolnumber) # if code doesn't start with a G but starts with a coordinate add the last command to the line elif code[0] == "X" or code[0] == "Y" or code[0] == "Z": self.line = self.last_command + " " + self.line self.parse_line() # parse this line again with the corrections else: pass print("Unsupported gcode " + str(code))
[docs] def parse_args(self, args): """Parse command-line arguments into a dictionary. This function takes a string of arguments, splits it into individual components, and maps each component's first character to its corresponding numeric value. If a numeric value cannot be converted from the string, it defaults to 1. The resulting dictionary contains the first characters as keys and their associated numeric values as values. Args: args (str): A string of space-separated arguments, where each argument consists of a letter followed by a numeric value. Returns: dict: A dictionary mapping each letter to its corresponding numeric value. """ dic = {} if args: bits = args.split() for bit in bits: letter = bit[0] try: coord = float(bit[1:]) except ValueError: coord = 1 dic[letter] = coord return dic
[docs] def parse_G1(self, args, type="G1"): # G1: Controlled move self.model.do_G1(self.parse_args(args), type)
[docs] def parse_G0(self, args, type="G0"): # G1: Controlled move self.model.do_G1(self.parse_args(args), type)
[docs] def parse_G90(self, args): # G90: Set to Absolute Positioning self.model.set_relative(False)
[docs] def parse_G91(self, args): # G91: Set to Relative Positioning self.model.set_relative(True)
[docs] def parse_G92(self, args): # G92: Set Position self.model.do_G92(self.parse_args(args))
[docs] def warn(self, msg): print("[WARN] Line %d: %s (Text:'%s')" % (self.lineNb, msg, self.line))
[docs] def error(self, msg): """Log an error message and raise an exception. This method prints an error message to the console, including the line number, the provided message, and the text associated with the error. After logging the error, it raises a generic Exception with the same message format. Args: msg (str): The error message to be logged. Raises: Exception: Always raises an Exception with the formatted error message. """ print("[ERROR] Line %d: %s (Text:'%s')" % (self.lineNb, msg, self.line)) raise Exception("[ERROR] Line %d: %s (Text:'%s')" % (self.lineNb, msg, self.line))
[docs] class GcodeModel: def __init__(self, parser): # save parser for messages
[docs] self.parser = parser
# latest coordinates & extrusion relative to offset, feedrate
[docs] self.relative = {"X": 0.0, "Y": 0.0, "Z": 0.0, "F": 0.0, "E": 0.0}
# offsets for relative coordinates and position reset (G92)
[docs] self.offset = {"X": 0.0, "Y": 0.0, "Z": 0.0, "E": 0.0}
# if true, args for move (G1) are given relatively (default: absolute)
[docs] self.isRelative = False
[docs] self.color = [0, 0, 0, 0, 0, 0, 0, 0] # RGBCMYKW
[docs] self.toolnumber = 0
# the segments
[docs] self.segments = []
[docs] self.layers = []
[docs] def do_G1(self, args, type): """Perform a rapid or controlled movement based on the provided arguments. This method updates the current coordinates based on the input arguments, either in relative or absolute terms. It constructs a segment representing the movement and adds it to the model if there are changes in the XYZ coordinates. The function handles unknown axes by issuing a warning and ensures that the segment is only added if there are actual changes in position. Args: args (dict): A dictionary containing movement parameters for each axis. type (str): The type of movement (e.g., 'G0' for rapid move, 'G1' for controlled move). """ # G0/G1: Rapid/Controlled move # clone previous coords coords = dict(self.relative) # update changed coords for axis in args.keys(): # print(coords) if axis in coords: if self.isRelative: coords[axis] += args[axis] else: coords[axis] = args[axis] else: self.warn("Unknown axis '%s'" % axis) # build segment absolute = { "X": self.offset["X"] + coords["X"], "Y": self.offset["Y"] + coords["Y"], "Z": self.offset["Z"] + coords["Z"], "F": coords["F"], # no feedrate offset } # if gcode line has no E = travel move # but still add E = 0 to segment (so coords dictionaries have same shape for subdividing linspace function) if "E" not in args: # "E" in coords: absolute["E"] = 0 else: absolute["E"] = args["E"] seg = Segment( type, absolute, self.color, self.toolnumber, # self.layerIdx, self.parser.lineNb, self.parser.line, ) # only add seg if XYZ changes (skips "G1 Fxxx" only lines and avoids double vertices inside Blender, # because XYZ stays the same on such a segment. if ( seg.coords["X"] != self.relative["X"] + self.offset["X"] or seg.coords["Y"] != self.relative["Y"] + self.offset["Y"] or seg.coords["Z"] != self.relative["Z"] + self.offset["Z"] ): self.add_segment(seg) # update model coords self.relative = coords
[docs] def do_G92(self, args): """Set the current position of the axes without moving. This method updates the current coordinates for the specified axes based on the provided arguments. If no axes are mentioned, it sets all axes (X, Y, Z) to zero. The method adjusts the offset values by transferring the difference between the relative and specified values for each axis. If an unknown axis is provided, a warning is issued. Args: args (dict): A dictionary containing axis names as keys (e.g., 'X', 'Y', 'Z') and their corresponding position values as float. """ # G92: Set Position # this changes the current coords, without moving, so do not generate a segment # no axes mentioned == all axes to 0 if not len(args.keys()): args = {"X": 0.0, "Y": 0.0, "Z": 0.0} # , "E":0.0 # update specified axes for axis in args.keys(): if axis in self.offset: # transfer value from relative to offset self.offset[axis] += self.relative[axis] - args[axis] self.relative[axis] = args[axis] else: self.warn("Unknown axis '%s'" % axis)
[docs] def do_M163(self, args): """Update the color settings for a specific segment based on given parameters. This method modifies the color attributes of an object by updating the CMYKW values for a specified segment. It first creates a new list from the existing color attribute to avoid reference issues. The method then extracts the index and weight from the provided arguments and updates the color list accordingly. Additionally, it retrieves RGB values from the last comment and applies them to the color list. Args: args (dict): A dictionary containing the parameters for the operation. - 'S' (int): The index of the segment to update. - 'P' (float): The weight to set for the CMYKW color component. Returns: None: This method does not return a value; it modifies the object's state. """ col = list( self.color ) # list() creates new list, otherwise you just change reference and all segs have same color extr_idx = int(args["S"]) # e.g. M163 S0 P1 weight = args["P"] # change CMYKW col[ extr_idx + 3 ] = weight # +3 weil ersten 3 stellen RGB sind, need only CMYKW values for extrude self.color = col # take RGB values for seg from last comment (above first M163 statement) comment = eval(GcodeParser.comment) # string comment to list # RGB = [GcodeParser.comment[1], GcodeParser.com RGB = comment[:3] self.color[:3] = RGB
[docs] def set_relative(self, isRelative): self.isRelative = isRelative
[docs] def add_segment(self, segment): self.segments.append(segment)
[docs] def warn(self, msg): self.parser.warn(msg)
[docs] def error(self, msg): self.parser.error(msg)
[docs] def classify_segments(self): """Classify segments into layers based on their coordinates and extrusion style. This method processes a list of segments, determining their extrusion style (travel, retract, restore, or extrude) based on the movement of the coordinates and the state of the extruder. It organizes the segments into layers, which are used for later rendering. The classification is based on changes in the Z-coordinate and the extruder's position. The function initializes the coordinates and iterates through each segment, checking for movements in the X, Y, and Z directions. It identifies when a new layer begins based on changes in the Z-coordinate and the extruder's state. Segments are then grouped into layers for further processing. Raises: None """ # start model at 0, act as prev_coords coords = {"X": 0.0, "Y": 0.0, "Z": 0.0, "F": 0.0, "E": 0.0} # first layer at Z=0 currentLayerIdx = 0 currentLayerZ = 0 # better to use self.first_layer_height layer = [] # add layer to model.layers for i, seg in enumerate(self.segments): # default style is travel (move, no extrusion) style = "travel" # no horizontal movement, but extruder movement: retraction/refill # if ( # (seg.coords["X"] == coords["X"]) and # (seg.coords["Y"] == coords["Y"]) and # (seg.coords["Z"] == coords["Z"]) and # (seg.coords["E"] != coords["E"]) # ): # style = "retract" if (seg.coords["E"] < coords["E"]) else "restore" # some horizontal movement, and positive extruder movement: extrusion if ( (seg.coords["X"] != coords["X"]) or (seg.coords["Y"] != coords["Y"]) or (seg.coords["Z"] != coords["Z"]) ): # != coords["E"] style = "extrude" # #force extrude if there is some movement # segments to layer lists # look ahead and if next seg has E and differenz Z, add new layer for current segment if i == len(self.segments) - 1: layer.append(seg) currentLayerIdx += 1 seg.style = style seg.layerIdx = currentLayerIdx # add layer to list of Layers, used to later draw single layer objects self.layers.append(layer) break # positive extruder movement of next point in a different Z signals a layer change for this segment if ( self.segments[i].coords["Z"] != currentLayerZ and self.segments[i + 1].coords["E"] > 0 ): self.layers.append( layer ) # layer abschließen, add layer to list of Layers, used to later draw single layer objects layer = [] # start new layer currentLayerZ = seg.coords["Z"] currentLayerIdx += 1 # lookback, previous point before texrsuion is part of new layer too, both create an edge # set style and layer in segment seg.style = style seg.layerIdx = currentLayerIdx layer.append(seg) coords = seg.coords
[docs] def subdivide(self, subd_threshold): """Subdivide segments based on a specified threshold. This method processes a list of segments and subdivides them into smaller segments if the distance between consecutive segments exceeds the given threshold. The subdivision is performed by interpolating points between the original segment's coordinates, ensuring that the resulting segments maintain the original order and properties. This is particularly useful for manipulating attributes such as color and continuous deformation in graphical representations. Args: subd_threshold (float): The distance threshold for subdividing segments. Segments with a distance greater than this value will be subdivided. Returns: None: The method modifies the instance's segments attribute in place. """ # smart subdivide # divide edge if > subd_threshold # do it in parser to keep index order of vertex and travel/extrude info # segmentation of path necessary for manipulation of color, continous deforming ect. subdivided_segs = [] # start model at 0 coords = {"X": 0.0, "Y": 0.0, "Z": 0.0, "F": 0.0, "E": 0.0} # no interpolation for seg in self.segments: # calc XYZ distance d = (seg.coords["X"] - coords["X"]) ** 2 d += (seg.coords["Y"] - coords["Y"]) ** 2 d += (seg.coords["Z"] - coords["Z"]) ** 2 seg.distance = math.sqrt(d) if seg.distance > subd_threshold: subdivs = math.ceil( seg.distance / subd_threshold ) # ceil makes sure that linspace interval is at least 2 P1 = coords P2 = seg.coords # interpolated points interp_coords = np.linspace( list(P1.values()), list(P2.values()), num=subdivs, endpoint=True ) for i in range( len(interp_coords) ): # inteprolated points array back to segment object new_coords = { "X": interp_coords[i][0], "Y": interp_coords[i][1], "Z": interp_coords[i][2], "F": seg.coords["F"], } # E/subdivs is for relative extrusion, absolute extrusion need "E":interp_coords[i][4] # print("interp_coords_new:", new_coords) if seg.coords["E"] > 0: new_coords["E"] = round(seg.coords["E"] / (subdivs - 1), 5) else: new_coords["E"] = 0 # make sure P1 hasn't been written before, compare with previous line if ( new_coords["X"] != coords["X"] or new_coords["Y"] != coords["Y"] or new_coords["Z"] != coords["Z"] ): # write segment only if movement changes, # avoid double coordinates due to same start and endpoint of linspace new_seg = Segment( seg.type, new_coords, seg.color, seg.toolnumber, seg.lineNb, seg.line ) new_seg.layerIdx = seg.layerIdx new_seg.style = seg.style subdivided_segs.append(new_seg) else: subdivided_segs.append(seg) coords = seg.coords # P1 becomes P2 self.segments = subdivided_segs
# create blender curve and vertex_info in text file(coords, style, color...)
[docs] def draw(self, split_layers=False): """Draws a mesh from segments and layers. This function creates a Blender curve and vertex information in a text file, which includes coordinates, style, and color. If the `split_layers` parameter is set to True, it processes each layer individually, generating vertices and edges for each layer. If False, it processes the segments as a whole. Args: split_layers (bool): A flag indicating whether to split the drawing into separate layers or not. """ if split_layers: i = 0 for layer in self.layers: verts, edges = segments_to_meshdata(layer) if len(verts) > 0: obj_from_pydata(str(i), verts, edges, close=False, collection_name="Layers") i += 1 else: verts, edges = segments_to_meshdata(self.segments) obj_from_pydata("Gcode", verts, edges, close=False, collection_name="Layers")
[docs] class Segment: def __init__(self, type, coords, color, toolnumber, lineNb, line):
[docs] self.type = type
[docs] self.coords = coords
[docs] self.color = color
[docs] self.toolnumber = toolnumber
[docs] self.lineNb = lineNb
[docs] self.line = line
[docs] self.style = None
[docs] self.layerIdx = None
[docs] def __str__(self): """Return a string representation of the object. This method constructs a string that includes the coordinates, line number, style, layer index, and color of the object. It formats these attributes into a readable string format for easier debugging and logging. Returns: str: A formatted string representing the object's attributes. """ return " <coords=%s, lineNb=%d, style=%s, layerIdx=%d, color=%s" % ( str(self.coords), self.lineNb, self.style, self.layerIdx, str(self.color), )
[docs] class Layer: def __init__(self, Z):
[docs] self.Z = Z
[docs] self.segments = []
[docs] self.distance = None
[docs] self.extrudate = None
[docs] def __str__(self): return "<Layer: Z=%f, len(segments)=%d>" % (self.Z, len(self.segments))
if __name__ == "__main__":
[docs] path = "test.gcode"
parser = GcodeParser() model = parser.parse_file(path)