"""Fabex 'bas_relief.py'
Module to allow the creation of reliefs from Images or View Layers.
(https://en.wikipedia.org/wiki/Relief#Bas-relief_or_low_relief)
"""
from math import ceil, floor, sqrt
import re
import time
import numpy
import bpy
from .constants import EPS, NUMPYALG
from .utilities.image_utils import (
image_to_numpy,
numpy_to_image,
)
[docs]
class ReliefError(Exception):
pass
[docs]
def copy_compbuf_data(inbuf, outbuf):
outbuf[:] = inbuf[:]
[docs]
def restrict_buffer(inbuf, outbuf):
"""Restrict the resolution of an input buffer to match an output buffer.
This function scales down the input buffer `inbuf` to fit the dimensions
of the output buffer `outbuf`. It computes the average of the
neighboring pixels in the input buffer to create a downsampled version
in the output buffer. The method used for downsampling can vary based on
the dimensions of the input and output buffers, utilizing either a
simple averaging method or a more complex numpy-based approach.
Args:
inbuf (numpy.ndarray): The input buffer to be downsampled, expected to be
a 2D array.
outbuf (numpy.ndarray): The output buffer where the downsampled result will
be stored, also expected to be a 2D array.
Returns:
None: The function modifies `outbuf` in place.
"""
# scale down array....
inx = inbuf.shape[0]
iny = inbuf.shape[1]
outx = outbuf.shape[0]
outy = outbuf.shape[1]
dx = inx / outx
dy = iny / outy
filterSize = 0.5
xfiltersize = dx * filterSize
sy = dy / 2 - 0.5
if dx == 2 and dy == 2: # much simpler method
outbuf[:] = (
inbuf[::2, ::2] + inbuf[1::2, ::2] + inbuf[::2, 1::2] + inbuf[1::2, 1::2]
) / 4.0
elif NUMPYALG: # numpy method
yrange = numpy.arange(0, outy)
xrange = numpy.arange(0, outx)
w = 0
sx = dx / 2 - 0.5
sxrange = xrange * dx + sx
syrange = yrange * dy + sy
sxstartrange = numpy.array(numpy.ceil(sxrange - xfiltersize), dtype=int)
sxstartrange[sxstartrange < 0] = 0
sxendrange = numpy.array(numpy.floor(sxrange + xfiltersize) + 1, dtype=int)
sxendrange[sxendrange > inx] = inx
systartrange = numpy.array(numpy.ceil(syrange - xfiltersize), dtype=int)
systartrange[systartrange < 0] = 0
syendrange = numpy.array(numpy.floor(syrange + xfiltersize) + 1, dtype=int)
syendrange[syendrange > iny] = iny
# 3 is the maximum value...?pff.
indices = numpy.arange(outx * outy * 2 * 3).reshape((2, outx * outy, 3))
r = sxendrange - sxstartrange
indices[0] = sxstartrange.repeat(outy)
indices[1] = systartrange.repeat(outx).reshape(outx, outy).swapaxes(0, 1).flatten()
outbuf.fill(0)
tempbuf = inbuf[indices[0], indices[1]]
tempbuf += inbuf[indices[0] + 1, indices[1]]
tempbuf += inbuf[indices[0], indices[1] + 1]
tempbuf += inbuf[indices[0] + 1, indices[1] + 1]
tempbuf /= 4.0
outbuf[:] = tempbuf.reshape((outx, outy))
else: # old method
for y in range(0, outy):
sx = dx / 2 - 0.5
for x in range(0, outx):
pixVal = 0
w = 0
#
for ix in range(
max(0, ceil(sx - dx * filterSize)),
min(floor(sx + dx * filterSize), inx - 1) + 1,
):
for iy in range(
max(0, ceil(sy - dx * filterSize)),
min(floor(sy + dx * filterSize), iny - 1) + 1,
):
pixVal += inbuf[ix, iy]
w += 1
outbuf[x, y] = pixVal / w
sx += dx
sy += dy
[docs]
def prolongate(inbuf, outbuf):
"""Prolongate an input buffer to a larger output buffer.
This function takes an input buffer and enlarges it to fit the
dimensions of the output buffer. It uses different methods to achieve
this based on the scaling factors derived from the input and output
dimensions. The function can handle specific cases where the scaling
factors are exactly 0.5, as well as a general case that applies a
bilinear interpolation technique for resizing.
Args:
inbuf (numpy.ndarray): The input buffer to be enlarged, expected to be a 2D array.
outbuf (numpy.ndarray): The output buffer where the enlarged data will be stored,
expected to be a 2D array of larger dimensions than inbuf.
"""
inx = inbuf.shape[0]
iny = inbuf.shape[1]
outx = outbuf.shape[0]
outy = outbuf.shape[1]
dx = inx / outx
dy = iny / outy
filterSize = 1
xfiltersize = dx * filterSize
if dx == 0.5 and dy == 0.5:
outbuf[::2, ::2] = inbuf
outbuf[1::2, ::2] = inbuf
outbuf[::2, 1::2] = inbuf
outbuf[1::2, 1::2] = inbuf
elif NUMPYALG: # numpy method
sy = -dy / 2
sx = -dx / 2
xrange = numpy.arange(0, outx)
yrange = numpy.arange(0, outy)
sxrange = xrange * dx + sx
syrange = yrange * dy + sy
sxstartrange = numpy.array(numpy.ceil(sxrange - xfiltersize), dtype=int)
sxstartrange[sxstartrange < 0] = 0
sxendrange = numpy.array(numpy.floor(sxrange + xfiltersize) + 1, dtype=int)
sxendrange[sxendrange >= inx] = inx - 1
systartrange = numpy.array(numpy.ceil(syrange - xfiltersize), dtype=int)
systartrange[systartrange < 0] = 0
syendrange = numpy.array(numpy.floor(syrange + xfiltersize) + 1, dtype=int)
syendrange[syendrange >= iny] = iny - 1
indices = numpy.arange(outx * outy * 2).reshape((2, outx * outy))
indices[0] = sxstartrange.repeat(outy)
indices[1] = systartrange.repeat(outx).reshape(outx, outy).swapaxes(0, 1).flatten()
tempbuf = inbuf[indices[0], indices[1]]
tempbuf /= 4.0
outbuf[:] = tempbuf.reshape((outx, outy))
else:
sy = -dy / 2
for y in range(0, outy):
sx = -dx / 2
for x in range(0, outx):
pixVal = 0
weight = 0
for ix in range(
max(0, ceil(sx - filterSize)), min(floor(sx + filterSize), inx - 1) + 1
):
for iy in range(
max(0, ceil(sy - filterSize)), min(floor(sy + filterSize), iny - 1) + 1
):
fx = abs(sx - ix)
fy = abs(sy - iy)
fval = (1 - fx) * (1 - fy)
pixVal += inbuf[ix, iy] * fval
weight += fval
outbuf[x, y] = pixVal / weight
sx += dx
sy += dy
[docs]
def idx(r, c, cols):
return r * cols + c + 1
[docs]
def smooth(U, F, linbcgiterations, planar):
"""Smooth a matrix U using a filter F at a specified level.
This function applies a smoothing operation on the input matrix U using
the filter F. It utilizes the linear Biconjugate Gradient method for the
smoothing process. The number of iterations for the linear BCG method is
specified by linbcgiterations, and the planar parameter indicates
whether the operation is to be performed in a planar manner.
Args:
U (numpy.ndarray): The input matrix to be smoothed.
F (numpy.ndarray): The filter used for smoothing.
linbcgiterations (int): The number of iterations for the linear BCG method.
planar (bool): A flag indicating whether to perform the operation in a planar manner.
Returns:
None: This function modifies the input matrix U in place.
"""
iter = 0
err = 0
rows = U.shape[1]
cols = U.shape[0]
n = U.size
linear_bcg(n, F, U, 2, 0.001, linbcgiterations, iter, err, rows, cols, planar)
[docs]
def calculate_defect(D, U, F):
"""Calculate the defect of a grid based on the input fields.
This function computes the defect values for a grid by comparing the
input field `F` with the values in the grid `U`. The defect is
calculated using finite difference approximations, taking into account
the neighboring values in the grid. The results are stored in the output
array `D`, which is modified in place.
Args:
D (ndarray): A 2D array where the defect values will be stored.
U (ndarray): A 2D array representing the current state of the grid.
F (ndarray): A 2D array representing the target field to compare against.
Returns:
None: The function modifies the array `D` in place and does not return a
value.
"""
sx = F.shape[0]
sy = F.shape[1]
h = 1.0 / sqrt(sx * sy * 1.0)
h2i = 1.0 / (h * h)
h2i = 1
D[1:-1, 1:-1] = (
F[1:-1, 1:-1] - U[:-2, 1:-1] - U[2:, 1:-1] - U[1:-1, :-2] - U[1:-1, 2:] + 4 * U[1:-1, 1:-1]
)
# sides
D[1:-1, 0] = F[1:-1, 0] - U[:-2, 0] - U[2:, 0] - U[1:-1, 1] + 3 * U[1:-1, 0]
D[1:-1, -1] = F[1:-1, -1] - U[:-2, -1] - U[2:, -1] - U[1:-1, -2] + 3 * U[1:-1, -1]
D[0, 1:-1] = F[0, 1:-1] - U[0, :-2] - U[0, :-2] - U[1, 1:-1] + 3 * U[0, 1:-1]
D[-1, 1:-1] = F[-1, 1:-1] - U[-1, :-2] - U[-1, :-2] - U[-1, 1:-1] + 3 * U[-1, 1:-1]
# corners
D[0, 0] = F[0, 0] - U[0, 1] - U[1, 0] + 2 * U[0, 0]
D[0, -1] = F[0, -1] - U[1, -1] - U[0, -2] + 2 * U[0, -1]
D[-1, 0] = F[-1, 0] - U[-2, 0] - U[-1, 1] + 2 * U[-1, 0]
D[-1, -1] = F[-1, -1] - U[-2, -1] - U[-1, -2] + 2 * U[-1, -1]
[docs]
def add_correction(U, C):
U += C
[docs]
def solve_pde_multigrid(
F, U, vcycleiterations, linbcgiterations, smoothiterations, mins, levels, useplanar, planar
):
"""Solve a partial differential equation using a multigrid method.
This function implements a multigrid algorithm to solve a given partial
differential equation (PDE). It operates on a grid of varying
resolutions, applying smoothing and correction steps iteratively to
converge towards the solution. The algorithm consists of several key
phases: restriction of the right-hand side to coarser grids, solving on
the coarsest grid, and then interpolating corrections back to finer
grids. The process is repeated for a specified number of V-cycle
iterations.
Args:
F (numpy.ndarray): The right-hand side of the PDE represented as a 2D array.
U (numpy.ndarray): The initial guess for the solution, which will be updated in place.
vcycleiterations (int): The number of V-cycle iterations to perform.
linbcgiterations (int): The number of iterations for the linear solver used in smoothing.
smoothiterations (int): The number of smoothing iterations to apply at each level.
mins (int): Minimum grid size (not used in the current implementation).
levels (int): The number of levels in the multigrid hierarchy.
useplanar (bool): A flag indicating whether to use planar information during the solution
process.
planar (numpy.ndarray): A 2D array indicating planar information for the grid.
Returns:
None: The function modifies the input array U in place to contain the final
solution.
Note:
The function assumes that the input arrays F and U have compatible
shapes
and that the planar array is appropriately defined for the problem
context.
"""
xmax = F.shape[0]
ymax = F.shape[1]
# int i # index for simple loops
# int k # index for iterating through levels
# int k2 # index for iterating through levels in V-cycles
# 1. restrict f to coarse-grid (by the way count the number of levels)
# k=0: fine-grid = f
# k=levels: coarsest-grid
# pix = CB_VAL#what is this>???
# int cycle
# int sx, sy
RHS = []
IU = []
VF = []
PLANAR = []
for a in range(0, levels + 1):
RHS.append(None)
IU.append(None)
VF.append(None)
PLANAR.append(None)
VF[0] = numpy.zeros((xmax, ymax), dtype=numpy.float64)
# numpy.fill(pix)!? TODO
RHS[0] = F.copy()
IU[0] = U.copy()
PLANAR[0] = planar.copy()
sx = xmax
sy = ymax
# print(planar)
for k in range(0, levels):
# calculate size of next level
sx = int(sx / 2)
sy = int(sy / 2)
PLANAR[k + 1] = numpy.zeros((sx, sy), dtype=numpy.float64)
RHS[k + 1] = numpy.zeros((sx, sy), dtype=numpy.float64)
IU[k + 1] = numpy.zeros((sx, sy), dtype=numpy.float64)
VF[k + 1] = numpy.zeros((sx, sy), dtype=numpy.float64)
# restrict from level k to level k+1 (coarser-grid)
restrict_buffer(PLANAR[k], PLANAR[k + 1])
PLANAR[k + 1] = PLANAR[k + 1] > 0
# numpytoimage(PLANAR[k+1],'planar')
# print(PLANAR[k+1])
restrict_buffer(RHS[k], RHS[k + 1])
# numpytoimage(RHS[k+1],'rhs')
# 2. find exact sollution at the coarsest-grid (k=levels)
# this was replaced to easify code. exact_sollution( RHS[levels], IU[levels] )
IU[levels].fill(0.0)
# 3. nested iterations
for k in range(levels - 1, -1, -1):
print("K:", str(k))
# 4. interpolate sollution from last coarse-grid to finer-grid
# interpolate from level k+1 to level k (finer-grid)
prolongate(IU[k + 1], IU[k])
# print('k',k)
# 4.1. first target function is the equation target function
# (following target functions are the defect)
copy_compbuf_data(RHS[k], VF[k])
# print('lanar ')
# 5. V-cycle (twice repeated)
for cycle in range(0, vcycleiterations):
print("v-cycle iteration:", str(cycle))
# 6. downward stroke of V
for k2 in range(k, levels):
# 7. pre-smoothing of initial sollution using target function
# zero for initial guess at smoothing
# (except for level k when iu contains prolongated result)
if k2 != k:
IU[k2].fill(0.0)
for i in range(0, smoothiterations):
smooth(IU[k2], VF[k2], linbcgiterations, PLANAR[k2])
# 8. calculate defect at level
# d[k2] = Lh * ~u[k2] - f[k2]
D = numpy.zeros_like(IU[k2])
# if k2==0:
# IU[k2][planar[k2]]=IU[k2].max()
# print(IU[0])
if useplanar and k2 == 0:
IU[k2][PLANAR[k2]] = IU[k2].min()
# if k2==0 :
# VF[k2][PLANAR[k2]]=0.0
# print(IU[0])
calculate_defect(D, IU[k2], VF[k2])
# 9. restrict deffect as target function for next coarser-grid
# def -> f[k2+1]
restrict_buffer(D, VF[k2 + 1])
# 10. solve on coarsest-grid (target function is the deffect)
# iu[levels] should contain sollution for
# the f[levels] - last deffect, iu will now be the correction
IU[levels].fill(0.0) # exact_sollution(VF[levels], IU[levels] )
# 11. upward stroke of V
for k2 in range(levels - 1, k - 1, -1):
print("k2: ", str(k2))
# 12. interpolate correction from last coarser-grid to finer-grid
# iu[k2+1] -> cor
C = numpy.zeros_like(IU[k2])
prolongate(IU[k2 + 1], C)
# 13. add interpolated correction to initial sollution at level k2
add_correction(IU[k2], C)
# 14. post-smoothing of current sollution using target function
for i in range(0, smoothiterations):
smooth(IU[k2], VF[k2], linbcgiterations, PLANAR[k2])
if useplanar and k2 == 0:
IU[0][planar] = IU[0].min()
# print(IU[0])
# --- end of V-cycle
# --- end of nested iteration
# 15. final sollution
# IU[0] contains the final sollution
U[:] = IU[0]
[docs]
def asolve(b, x):
x[:] = -4 * b
[docs]
def atimes(x, res):
"""Apply a discrete Laplacian operator to a 2D array.
This function computes the discrete Laplacian of a given 2D array `x`
and stores the result in the `res` array. The Laplacian is calculated
using finite difference methods, which involve summing the values of
neighboring elements and applying specific boundary conditions for the
edges and corners of the array.
Args:
x (numpy.ndarray): A 2D array representing the input values.
res (numpy.ndarray): A 2D array where the result will be stored. It must have the same shape
as `x`.
Returns:
None: The result is stored directly in the `res` array.
"""
res[1:-1, 1:-1] = x[:-2, 1:-1] + x[2:, 1:-1] + x[1:-1, :-2] + x[1:-1, 2:] - 4 * x[1:-1, 1:-1]
# sides
res[1:-1, 0] = x[0:-2, 0] + x[2:, 0] + x[1:-1, 1] - 3 * x[1:-1, 0]
res[1:-1, -1] = x[0:-2, -1] + x[2:, -1] + x[1:-1, -2] - 3 * x[1:-1, -1]
res[0, 1:-1] = x[0, :-2] + x[0, 2:] + x[1, 1:-1] - 3 * x[0, 1:-1]
res[-1, 1:-1] = x[-1, :-2] + x[-1, 2:] + x[-2, 1:-1] - 3 * x[-1, 1:-1]
# corners
res[0, 0] = x[1, 0] + x[0, 1] - 2 * x[0, 0]
res[-1, 0] = x[-2, 0] + x[-1, 1] - 2 * x[-1, 0]
res[0, -1] = x[0, -2] + x[1, -1] - 2 * x[0, -1]
res[-1, -1] = x[-1, -2] + x[-2, -1] - 2 * x[-1, -1]
[docs]
def snrm(n, sx, itol):
"""Calculate the square root of the sum of squares or the maximum absolute
value.
This function computes a value based on the input parameters. If the
tolerance level (itol) is less than or equal to 3, it calculates the
square root of the sum of squares of the input array (sx). If the
tolerance level is greater than 3, it returns the maximum absolute value
from the input array.
Args:
n (int): An integer parameter, though it is not used in the current
implementation.
sx (numpy.ndarray): A numpy array of numeric values.
itol (int): An integer that determines which calculation to perform.
Returns:
float: The square root of the sum of squares if itol <= 3, otherwise the
maximum absolute value.
"""
if itol <= 3:
temp = sx * sx
ans = temp.sum()
return sqrt(ans)
else:
temp = numpy.abs(sx)
return temp.max()
[docs]
def linear_bcg(n, b, x, itol, tol, itmax, iter, err, rows, cols, planar):
"""Solve a linear system using the Biconjugate Gradient Method.
This function implements the Biconjugate Gradient Method as described in
Numerical Recipes in C. It iteratively refines the solution to a linear
system of equations defined by the matrix-vector product. The method is
particularly useful for large, sparse systems where direct methods are
inefficient. The function takes various parameters to control the
iteration process and convergence criteria.
Args:
n (int): The size of the linear system.
b (numpy.ndarray): The right-hand side vector of the linear system.
x (numpy.ndarray): The initial guess for the solution vector.
itol (int): The type of norm to use for convergence checks.
tol (float): The tolerance for convergence.
itmax (int): The maximum number of iterations allowed.
iter (int): The current iteration count (should be initialized to 0).
err (float): The error estimate (should be initialized).
rows (int): The number of rows in the matrix.
cols (int): The number of columns in the matrix.
planar (bool): A flag indicating if the problem is planar.
Returns:
None: The solution is stored in the input array `x`.
"""
p = numpy.zeros((cols, rows))
pp = numpy.zeros((cols, rows))
r = numpy.zeros((cols, rows))
rr = numpy.zeros((cols, rows))
z = numpy.zeros((cols, rows))
zz = numpy.zeros((cols, rows))
iter = 0
atimes(x, r)
r[:] = b - r
rr[:] = r
atimes(r, rr) # minimum residual
znrm = 1.0
if itol == 1:
bnrm = snrm(n, b, itol)
elif itol == 2:
asolve(b, z)
bnrm = snrm(n, z, itol)
elif itol == 3 or itol == 4:
asolve(b, z)
bnrm = snrm(n, z, itol)
asolve(r, z)
znrm = snrm(n, z, itol)
else:
print("illegal itol in linbcg")
asolve(r, z)
while iter <= itmax:
iter += 1
zm1nrm = znrm
asolve(rr, zz)
bknum = 0.0
temp = z * rr
bknum = temp.sum() # -z[0]*rr[0]????
if iter == 1:
p[:] = z
pp[:] = zz
else:
bk = bknum / bkden
p = bk * p + z
pp = bk * pp + zz
bkden = bknum
atimes(p, z)
temp = z * pp
akden = temp.sum()
ak = bknum / akden
atimes(pp, zz)
x += ak * p
r -= ak * z
rr -= ak * zz
asolve(r, z)
if itol == 1 or itol == 2:
znrm = 1.0
err = snrm(n, r, itol) / bnrm
elif itol == 3 or itol == 4:
znrm = snrm(n, z, itol)
if abs(zm1nrm - znrm) > EPS * znrm:
dxnrm = abs(ak) * snrm(n, p, itol)
err = znrm / abs(zm1nrm - znrm) * dxnrm
else:
err = znrm / bnrm
continue
xnrm = snrm(n, x, itol)
if err <= 0.5 * xnrm:
err /= xnrm
else:
err = znrm / bnrm
continue
if err <= tol:
break
[docs]
def tonemap(i, exponent):
"""Apply tone mapping to an image array.
This function performs tone mapping on the input image array by first
filtering out values that are excessively high, which may indicate that
the depth buffer was not written correctly. It then normalizes the
values between the minimum and maximum heights, and finally applies an
exponentiation to adjust the brightness of the image.
Args:
i (numpy.ndarray): A numpy array representing the image data.
exponent (float): The exponent used for adjusting the brightness
of the normalized image.
Returns:
None: The function modifies the input array in place.
"""
# if depth buffer never got written it gets set
# to a great big value (10000000000.0)
# filter out anything within an order of magnitude of it
# so we only have things that are actually drawn
maxheight = i.max(where=i < 1000000000.0, initial=0)
minheight = i.min()
i[:] = numpy.clip(i, minheight, maxheight)
i[:] = ((i - minheight)) / (maxheight - minheight)
i[:] **= exponent
[docs]
def vert(column, row, z, XYscaling, Zscaling):
"""Create a single vertex in 3D space.
This function calculates the 3D coordinates of a vertex based on the
provided column and row values, as well as scaling factors for the X-Y
and Z dimensions. The resulting coordinates are scaled accordingly to
fit within a specified 3D space.
Args:
column (float): The column value representing the X coordinate.
row (float): The row value representing the Y coordinate.
z (float): The Z coordinate value.
XYscaling (float): The scaling factor for the X and Y coordinates.
Zscaling (float): The scaling factor for the Z coordinate.
Returns:
tuple: A tuple containing the scaled X, Y, and Z coordinates.
"""
return column * XYscaling, row * XYscaling, z * Zscaling
[docs]
def build_mesh(mesh_z, br):
"""Build a 3D mesh from a height map and apply transformations.
This function constructs a 3D mesh based on the provided height map
(mesh_z) and applies various transformations such as scaling and
positioning based on the parameters defined in the br object. It first
removes any existing BasReliefMesh objects from the scene, then creates
a new mesh from the height data, and finally applies decimation if the
specified ratio is within acceptable limits.
Args:
mesh_z (numpy.ndarray): A 2D array representing the height values
for the mesh vertices.
br (object): An object containing properties for width, height,
thickness, justification, and decimation ratio.
"""
global rows
global size
scale = 1
scalez = 1
decimateRatio = br.decimate_ratio # get variable from interactive table
bpy.ops.object.select_all(action="DESELECT")
for object in bpy.data.objects:
if re.search("BasReliefMesh", str(object)):
bpy.data.objects.remove(object)
print("old basrelief removed")
print("Building Mesh")
numY = mesh_z.shape[1]
numX = mesh_z.shape[0]
print(numX, numY)
verts = list()
faces = list()
for i, row in enumerate(mesh_z):
for j, col in enumerate(row):
verts.append(vert(i, j, col, scale, scalez))
count = 0
for i in range(0, numY * (numX - 1)):
if count < numY - 1:
A = i # the first vertex
B = i + 1 # the second vertex
C = (i + numY) + 1 # the third vertex
D = i + numY # the fourth vertex
face = (A, B, C, D)
faces.append(face)
count = count + 1
else:
count = 0
# Create Mesh Datablock
mesh = bpy.data.meshes.new("displacement")
mesh.from_pydata(verts, [], faces)
mesh.update()
# make object from mesh
new_object = bpy.data.objects.new("BasReliefMesh", mesh)
scene = bpy.context.scene
scene.collection.objects.link(new_object)
# mesh object is made - preparing to decimate.
ob = bpy.data.objects["BasReliefMesh"]
ob.select_set(True)
bpy.context.view_layer.objects.active = ob
bpy.context.active_object.dimensions = (
br.width_mm / 1000,
br.height_mm / 1000,
br.thickness_mm / 1000,
)
bpy.context.active_object.location = (
float(br.justify_x) * br.width_mm / 1000,
float(br.justify_y) * br.height_mm / 1000,
float(br.justify_z) * br.thickness_mm / 1000,
)
print("Faces:" + str(len(ob.data.polygons)))
print("Vertices:" + str(len(ob.data.vertices)))
if decimateRatio > 0.95:
print("Skipping Decimate Ratio > 0.95")
else:
m = ob.modifiers.new(name="Foo", type="DECIMATE")
m.ratio = decimateRatio
print("Decimating with Ratio:" + str(decimateRatio))
bpy.ops.object.modifier_apply(modifier=m.name)
print("Decimated")
print("Faces:" + str(len(ob.data.polygons)))
print("Vertices:" + str(len(ob.data.vertices)))
# Switches to cycles render to CYCLES to render the sceen then switches it back to FABEX_RENDER for basRelief
[docs]
def render_scene(width, height, bit_diameter, passes_per_radius, make_nodes, view_layer):
"""Render a scene using Blender's Cycles engine.
This function switches the rendering engine to Cycles, sets up the
necessary nodes for depth rendering if specified, and configures the
render resolution based on the provided parameters. It ensures that the
scene is in object mode before rendering and restores the original
rendering engine after the process is complete.
Args:
width (int): The width of the render in pixels.
height (int): The height of the render in pixels.
bit_diameter (float): The diameter used to calculate the number of passes.
passes_per_radius (int): The number of passes per radius for rendering.
make_nodes (bool): A flag indicating whether to create render nodes.
view_layer (str): The name of the view layer to be rendered.
Returns:
None: This function does not return any value.
"""
print("Rendering Scene")
scene = bpy.context.scene
# make sure we're in object mode or else bad things happen
if bpy.context.active_object:
bpy.ops.object.mode_set(mode="OBJECT")
scene.render.engine = "CYCLES"
our_viewer = None
our_renderer = None
if make_nodes:
# make depth render node and viewer node
if scene.use_nodes == False:
scene.use_nodes = True
node_tree = scene.node_tree
nodes = node_tree.nodes
our_viewer = node_tree.nodes.new(type="CompositorNodeViewer")
our_viewer.label = "CAM_basrelief_viewer"
our_renderer = node_tree.nodes.new(type="CompositorNodeRLayers")
our_renderer.label = "CAM_basrelief_renderlayers"
our_renderer.layer = view_layer
node_tree.links.new(
our_renderer.outputs[our_renderer.outputs.find("Depth")],
our_viewer.inputs[our_viewer.inputs.find("Image")],
)
scene.view_layers[view_layer].use_pass_z = True
# set our viewer as active so that it is what gets rendered to viewer node image
nodes.active = our_viewer
# Set render resolution
passes = bit_diameter / (2 * passes_per_radius)
x = round(width / passes)
y = round(height / passes)
print(x, y, passes)
scene.render.resolution_x = x
scene.render.resolution_y = y
scene.render.resolution_percentage = 100
bpy.ops.render.render(animation=False, write_still=False, use_viewport=True, layer="", scene="")
if our_renderer is not None:
nodes.remove(our_renderer)
if our_viewer is not None:
nodes.remove(our_viewer)
bpy.context.scene.render.engine = "FABEX_RENDER"
print("Done Rendering")
[docs]
def problem_areas(br):
"""Process image data to identify problem areas based on silhouette
thresholds.
This function analyzes an image and computes gradients to detect and
recover silhouettes based on specified parameters. It utilizes various
settings from the provided `br` object to adjust the processing,
including silhouette thresholds, scaling factors, and iterations for
smoothing and recovery. The function also handles image scaling and
applies a gradient mask if specified. The resulting data is then
converted back into an image format for further use.
Args:
br (object): An object containing various parameters for processing, including:
- use_image_source (bool): Flag to determine if a specific image source
should be used.
- source_image_name (str): Name of the source image if
`use_image_source` is True.
- silhouette_threshold (float): Threshold for silhouette detection.
- recover_silhouettes (bool): Flag to indicate if silhouettes should be
recovered.
- silhouette_scale (float): Scaling factor for silhouette recovery.
- min_gridsize (int): Minimum grid size for processing.
- smooth_iterations (int): Number of iterations for smoothing.
- vcycle_iterations (int): Number of iterations for V-cycle processing.
- linbcg_iterations (int): Number of iterations for linear BCG
processing.
- use_planar (bool): Flag to indicate if planar processing should be
used.
- gradient_scaling_mask_use (bool): Flag to indicate if a gradient
scaling mask should be used.
- gradient_scaling_mask_name (str): Name of the gradient scaling mask
image.
- depth_exponent (float): Exponent for depth adjustment.
- silhouette_exponent (int): Exponent for silhouette recovery.
- attenuation (float): Attenuation factor for processing.
Returns:
None: The function does not return a value but processes the image data and
saves the result.
"""
t = time.time()
if br.use_image_source:
i = bpy.data.images[br.source_image_name]
else:
i = bpy.data.images["Viewer Node"]
silh_thres = br.silhouette_threshold
recover_silh = br.recover_silhouettes
silh_scale = br.silhouette_scale
MINS = br.min_gridsize
smoothiterations = br.smooth_iterations
vcycleiterations = br.vcycle_iterations
linbcgiterations = br.linbcg_iterations
useplanar = br.use_planar
if br.gradient_scaling_mask_use:
m = bpy.data.images[br.gradient_scaling_mask_name]
nar = image_to_numpy(i)
if br.gradient_scaling_mask_use:
mask = image_to_numpy(m)
# put image to scale
tonemap(nar, br.depth_exponent)
nar = 1 - nar # reverse z buffer+ add something
print(nar.min(), nar.max())
gx = nar.copy()
gx.fill(0)
gx[:-1, :] = nar[1:, :] - nar[:-1, :]
gy = nar.copy()
gy.fill(0)
gy[:, :-1] = nar[:, 1:] - nar[:, :-1]
# it' ok, we can treat neg and positive silh separately here:
a = br.attenuation
planar = nar < (nar.min() + 0.0001)
# sqrt for silhouettes recovery:
sqrarx = numpy.abs(gx)
for iter in range(0, br.silhouette_exponent):
sqrarx = numpy.sqrt(sqrarx)
sqrary = numpy.abs(gy)
for iter in range(0, br.silhouette_exponent):
sqrary = numpy.sqrt(sqrary)
# detect and also recover silhouettes:
silhxpos = gx > silh_thres
gx = gx * (-silhxpos) + recover_silh * (silhxpos * silh_thres * silh_scale) * sqrarx
silhxneg = gx < -silh_thres
gx = gx * (-silhxneg) - recover_silh * (silhxneg * silh_thres * silh_scale) * sqrarx
silhx = numpy.logical_or(silhxpos, silhxneg)
gx = gx * silhx + (1.0 / a * numpy.log(1.0 + a * (gx))) * (-silhx) # attenuate
silhypos = gy > silh_thres
gy = gy * (-silhypos) + recover_silh * (silhypos * silh_thres * silh_scale) * sqrary
silhyneg = gy < -silh_thres
gy = gy * (-silhyneg) - recover_silh * (silhyneg * silh_thres * silh_scale) * sqrary
silhy = numpy.logical_or(silhypos, silhyneg) # both silh
gy = gy * silhy + (1.0 / a * numpy.log(1.0 + a * (gy))) * (-silhy) # attenuate
# now scale slopes...
if br.gradient_scaling_mask_use:
gx *= mask
gy *= mask
divg = gx + gy
divga = numpy.abs(divg)
divgp = divga > silh_thres / 4.0
divgp = 1 - divgp
for a in range(0, 2):
atimes(divgp, divga)
divga = divgp
numpy_to_image(divga, "problem")
[docs]
def relief(br):
"""Process an image to enhance relief features.
This function takes an input image and applies various processing
techniques to enhance the relief features based on the provided
parameters. It utilizes gradient calculations, silhouette recovery, and
optional detail enhancement through Fourier transforms. The processed
image is then used to build a mesh representation.
Args:
br (object): An object containing various parameters for the relief processing,
including:
- use_image_source (bool): Whether to use a specified image source.
- source_image_name (str): The name of the source image.
- silhouette_threshold (float): Threshold for silhouette detection.
- recover_silhouettes (bool): Flag to indicate if silhouettes should be
recovered.
- silhouette_scale (float): Scale factor for silhouette recovery.
- min_gridsize (int): Minimum grid size for processing.
- smooth_iterations (int): Number of iterations for smoothing.
- vcycle_iterations (int): Number of iterations for V-cycle processing.
- linbcg_iterations (int): Number of iterations for linear BCG
processing.
- use_planar (bool): Flag to indicate if planar processing should be
used.
- gradient_scaling_mask_use (bool): Flag to indicate if a gradient
scaling mask should be used.
- gradient_scaling_mask_name (str): Name of the gradient scaling mask
image.
- depth_exponent (float): Exponent for depth adjustment.
- attenuation (float): Attenuation factor for the processing.
- detail_enhancement_use (bool): Flag to indicate if detail enhancement
should be applied.
- detail_enhancement_freq (float): Frequency for detail enhancement.
- detail_enhancement_amount (float): Amount of detail enhancement to
apply.
Returns:
None: The function processes the image and builds a mesh but does not return a
value.
Raises:
ReliefError: If the input image is blank or invalid.
"""
t = time.time()
if br.use_image_source:
i = bpy.data.images[br.source_image_name]
else:
i = bpy.data.images["Viewer Node"]
silh_thres = br.silhouette_threshold
recover_silh = br.recover_silhouettes
silh_scale = br.silhouette_scale
MINS = br.min_gridsize
smoothiterations = br.smooth_iterations
vcycleiterations = br.vcycle_iterations
linbcgiterations = br.linbcg_iterations
useplanar = br.use_planar
if br.gradient_scaling_mask_use:
m = bpy.data.images[br.gradient_scaling_mask_name]
nar = image_to_numpy(i)
# return
if br.gradient_scaling_mask_use:
mask = image_to_numpy(m)
# put image to scale
tonemap(nar, br.depth_exponent)
nar = 1 - nar # reverse z buffer+ add something
print("Range:", nar.min(), nar.max())
if nar.min() - nar.max() == 0:
raise ReliefError(
"Input Image Is Blank - Check You Have the Correct View Layer or Input Image Set."
)
gx = nar.copy()
gx.fill(0)
gx[:-1, :] = nar[1:, :] - nar[:-1, :]
gy = nar.copy()
gy.fill(0)
gy[:, :-1] = nar[:, 1:] - nar[:, :-1]
# it' ok, we can treat neg and positive silh separately here:
a = br.attenuation
# numpy.logical_or(silhxplanar,silhyplanar)#
planar = nar < (nar.min() + 0.0001)
# sqrt for silhouettes recovery:
sqrarx = numpy.abs(gx)
for iter in range(0, br.silhouette_exponent):
sqrarx = numpy.sqrt(sqrarx)
sqrary = numpy.abs(gy)
for iter in range(0, br.silhouette_exponent):
sqrary = numpy.sqrt(sqrary)
# detect and also recover silhouettes:
silhxpos = gx > silh_thres
print("*** silhxpos is %s" % silhxpos)
gx = gx * (~silhxpos) + recover_silh * (silhxpos * silh_thres * silh_scale) * sqrarx
silhxneg = gx < -silh_thres
gx = gx * (~silhxneg) - recover_silh * (silhxneg * silh_thres * silh_scale) * sqrarx
silhx = numpy.logical_or(silhxpos, silhxneg)
gx = gx * silhx + (1.0 / a * numpy.log(1.0 + a * (gx))) * (~silhx) # attenuate
silhypos = gy > silh_thres
gy = gy * (~silhypos) + recover_silh * (silhypos * silh_thres * silh_scale) * sqrary
silhyneg = gy < -silh_thres
gy = gy * (~silhyneg) - recover_silh * (silhyneg * silh_thres * silh_scale) * sqrary
silhy = numpy.logical_or(silhypos, silhyneg) # both silh
gy = gy * silhy + (1.0 / a * numpy.log(1.0 + a * (gy))) * (~silhy) # attenuate
# now scale slopes...
if br.gradient_scaling_mask_use:
gx *= mask
gy *= mask
divg = gx + gy
divg[1:, :] = divg[1:, :] - gx[:-1, :] # subtract x
divg[:, 1:] = divg[:, 1:] - gy[:, :-1] # subtract y
if br.detail_enhancement_use: # fourier stuff here!disabled by now
print("detail enhancement")
rows, cols = gx.shape
crow, ccol = int(rows / 2), int(cols / 2)
divgmin = divg.min()
divg += divgmin
divgf = numpy.fft.fft2(divg)
divgfshift = numpy.fft.fftshift(divgf)
mask = divg.copy()
pos = numpy.array((crow, ccol))
def filterwindow(x, y, cx=0, cy=0):
return abs((cx - x)) + abs((cy - y))
mask = numpy.fromfunction(filterwindow, divg.shape, cx=crow, cy=ccol)
mask = numpy.sqrt(mask)
maskmin = mask.min()
maskmax = mask.max()
mask = (mask - maskmin) / (maskmax - maskmin)
mask *= br.detail_enhancement_amount
mask += 1 - mask.max()
mask[crow - 1 : crow + 1, ccol - 1 : ccol + 1] = 1 # to preserve basic freqencies.
divgfshift = divgfshift * mask
divgfshift = numpy.fft.ifftshift(divgfshift)
divg = numpy.abs(numpy.fft.ifft2(divgfshift))
divg -= divgmin
divg = -divg
print("detail enhancement finished")
levels = 0
mins = min(nar.shape[0], nar.shape[1])
while mins >= MINS:
levels += 1
mins = mins / 2
target = numpy.zeros_like(divg)
solve_pde_multigrid(
divg,
target,
vcycleiterations,
linbcgiterations,
smoothiterations,
mins,
levels,
useplanar,
planar,
)
tonemap(target, 1)
build_mesh(target, br)
t = time.time() - t
print("total time:" + str(t) + "\n")